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Abstract 0 The use of pattern recognition methods to classify a set of 
steroids into five therapeutic categories was investigated. First-order 
fragment molecular connectivity values were determined for 10 positions 
on each molecule using a template-based method of position assignment. 
Learning set and test set classifications were performed. Although the 
numbers of compounds misclassified were comparable for all of the 
methods, the identities of the misclassified compounds varied depending 
on whether the classification method assumed a local or a global view of 
the data. The best classification results were comparable to those ob- 
tained by linear and quadratic discriminant analyses. For this set of 
compounds, it was concluded that pattern recognition methods offer no 
advantages over traditional discriminant analysis methods if classification 
alone is considered, especially since most discriminant analysis proce- 
dures utilize stepwise variable selection, which is not as common in pat- 
tern recognition analyses. 

Keyphrases Steroids-pattern recognition using fragment molecular 
Connectivity 0 Fragment mdecular connectivity-pattern recognition 
of steroids Pattern recognition methods-classification of steroids in 
therapeutic categories using fragment molecular connectivity 

The use of fragment molecular connectivity values as 
position descriptors in a template-based discriminant 
analysis has been demonstrated as a means of classifying 
structures according to their type of pharmacological ac- 
tivity (1). The use of statistical discriminant analysis in 
such classification problems is optimal for multivariate, 
normal random variables (2) .  For observations that are not 
distributed normally with respect to the descriptor vari- 
ables, a discriminant analysis may not be the optimal 
classification method; certain distribution-free pattern 
recognition techniques may be more suitable (3). Although 
pattern recognition methods are not used as commonly in 
medicinal chemistry as are regression analysis and analysis 
of variance (4), the application of these techniques is in- 
creasing (5-9). 

Accordingly, a number of classification-type pattern 
recognition procedures were applied to a set of steroidal 
compounds studied previously using linear and quadratic 
discriminant analysis'. These compounds show markedly 
nonnormal distributions with respect to many of the po- 
sition variables used to describe them (Table I), It was felt 
that better classification results and greater insight into 
the value of molecular connectivity in classification 
problems possibly could be gained with pattern recognition 
methods. 

Four such methods were selected: Andrews function 
curves (lo), K nearest neighbor analysis (11, 12), multi- 
category linear learning machine analysis (13), and sta- 
tistical isolinear multicomponent analysis (SIMCA)2 (14, 
15). The use of the Andrews function for representing 
multivariate data in statistical research is well documented 
(16). The remaining methods were used as part of AR- 
THUR, a pattern recognition program (17, 18). 

I See D. R Henry and d.  H.  Rlnck, Eur J .  Med. Chem.. in press. ' The term SIMCA also can serve as an acronym for SIMilarity Components 
Analysis, SImple Modeling by Class Analogy, and other methods. 

EXPERIMENTAL 

A learning set of 46 steroidal compounds, classified into five therapeutic 
categories, was used (Table I). A test set of nine steroids also was selected 
(I-IX) (19). The pharmacological categories of these compounds are es- 
trogens (E or ESTR), progestogens (P or PROG), androgens (A or 
ANDR), corticosteroids (C or CORT), and cardiac steroids (H or CARD). 
A template structure (6) was designated, and 10 positions of interest were 
selected. Each compound in the study was superimposed on the template 
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Table I-Raw First-Order Molecular Connectivity Values of Compounds in the Analyses 

Position 
Compound" Classb a b C d e f g h I j 

1 Diethylstilbestrol 
2 Dienestrol 
3 Methallestril 
4 Benzestrol 
5 Promethestrol 
6 Estradiol 
7 :  
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

Estrone 
Estriol 
Equilin 
Equilinin 
Progesterone 
17-a-Hydroxyprogesterone 
Medroxyprogesterone 
Dihydroprogesterone 
Ethisterone 
Norethindrone 
Norethynodrel 
Dimethisterone 
Norgestrel 
Ethynodiol 
Testosterone 
a-Methyltestosterone 
Oxymetholone 
Nandrolone 
Dromostanolone 
Stanozolol 
Ethylestrenol 
Methandrostenolone 
Oxandrolone 
Hydrocortisone 
Prednisone 
Methylprednisolone 
Triamcinolone 
Fluorandrenolone 
Dexamethasone 
Paramethasone 
Flumethasone 
Fluprednisolone 
Halcinolone 
Digitoxigenin 
Digoxigenin 
Gitoxigenin 
Ouabain 
Strouhanthidin 

45 Proshlaridin 
46 Bufogenin B 
Mean 
SD 

E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
A 
A 
A 
A 
A 
A 
A 
A 
A 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
H 
H 
H 
H 
H 
H 
H 

0.801 
0.801 
0.781 
0.801 
0.742 
0.801 
0.801 
0.801 
0.801 
0.801 
0.846 
0.846 
0.846 
0.846 
0.846 
0.846 
0.846 
0.846 
0.846 
0.999 
0.846 
0.846 
0.808 
0.846 
0.846 
0.827 
0.908 
0.781 
0.762 
0.846 
0.781 
0.781 
0.781 
0.781 
0.781 
0.781 
0.781 
0.781 
0.846 
1.052 
1.052 
1.052 
1.052 
1.052 
0.927 
1.075 
0.853 
0.090 

0.622 
0.622 
0.827 
0.622 
0.577 
0.892 
0.892 
0.892 
0.892 
0.827 
0.892 
0.892 
0.827 
0.827 
0.827 
0.892 
0.931 
0.931 
0.931 
0.931 
0.892 
0.892 
1.105 
0.931 
1.105 
1.105 
0.931 
0.892 
1.105 
0.931 
0.892 
0.827 
0.892 
0.827 
0.892 
0.827 
0.827 
0.827 
0.827 
1.105 
1.105 
1.105 
1.181 
1.181 
0.892 
1.105 
0.908 
0.141 

0.827 
0.827 
0.827 
0.866 
0.866 
0.827 
0.827 
0.827 
0.827 
0.789 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.030 
1.030 
1.030 
1.030 
1.392 
1.392 
1.430 
1.030 
1.431 
1.431 
1.030 
1.327 
1.431 
1.030 
1.327 
1.327 
1.289 
1.327 
1.288 
1.327 
1.288 
1.327 
1.354 
1.431 
1.431 
1.431 
1.181 
1.181 
1.392 
1.431 
1.196 
0.234 

0.707 
0.577 
0.622 
0.707 
0.707 
0.854 
0.854 
0.854 
0.854 
0.622 
0.854 
0.854 
1.274 
0.622 
0.622 
0.854 
0.854 
0.854 
0.854 
0.854 
0.854 
0.854 
0.908 
0.854 
0.908 
0.908 
0.854 
0.854 
0.908 
0.854 
0.854 
1.274 
0.854 
0.567 
0.854 
0.567 
0.567 
0.567 
0.854 
0.908 
0.908 
0.908 
0.854 
0.854 
0.854 
0.908 
0.835 
0.162 

1.061 
0.204 
0.707 
1.115 
1.115 
0.908 
0.908 
0.908 
0.908 
0.854 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
0.908 
1.000 
0.846 
1.000 
0.955 
1.000 
0.955 
1.000 
0.955 
1 .ooo 
0.955 
0.908 
0.816 
0.908 
0.999 
0.908 
0.908 
0.908 
0.912 
0.121 

0.827 
0.827 
1.105 
0.866 
0.866 
1.030 
1.030 
1.030 
1.030 
0.986 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.030 
1.075 
1.030 
1.030 
1.030 
1.116 
1.116 
1.116 
1.116 
1.116 
1.116 
1.116 
1.029 
0.056 

0.622 
0.622 
1.115 
0.622 
0.622 
1.431 
1.392 
1.431 
1.392 
1392 
1.392 
1.392 
1.392 
1.431 
1.431 
1.392 
1.392 
1.246 
1.246 
1.392 
1.430 
1.392 
1.392 
1.431 
1.431 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.392 
1.030 
1.392 
1.392 
1.392 
1.392 
1.193 
1.392 
1.392 
1.392 
1.392 
1.392 
1.310 
0.227 

0.622 
0.622 
1 .ooo 
0.622 
0.622 
0.908 

0.999 
0.854 
0.854 
0.854 
0.854 
0.854 
0.908 
0.908 
0.854 

0.854 
0.854 
0.854 
0.908 
0.854 
0.854 
0.908 
0.908 
0.854 
0.854 
0.854 
0.854 
0.854 
0.854 
0.854 
0.955 
0.955 
1.274 
1.274 
1.274 
0.854 
0.955 
0.908 
0.908 
0.999 
0.908 
0.908 
0.908 
0.977 
0.892 

0.854 

0.854 

0.801 
0.801 
0.854 
0.801 
0.781 
0.955 
0.808 
0.880 
0.808 
0.808 
1.077 
1.077 
1.077 
0.986 
0.986 
1.077 
1.077 
1.077 
1.077 
1.077 
0.955 
1.327 
1.327 
0.955 
0.955 
1.327 
1.181 
1.327 
1.327 
1.077 
1.077 
1.077 
1.012 
1.012 
1.012 
1.051 
1.012 
1.077 
1.012 
0.986 
0.986 
0.911 
0.986 
0.986 
0.986 
0.911 
1.016 

0.224 
0.224 
0.781 
0.224 
0.408 
0.258 
0.204 
0.258 
0.204 
0.204 
0.954 
0.954 
0.954 
0.933 
0.993 
0.224 
0.224 
0.224 
0.224 
0.224 
0.258 
0.224 
0.224 
0.258 
0.258 
0.224 
0.224 
0.224 
0.224 
0.808 
0.808 
0.808 
0.808 
0.808 
0.808 
0.808 
0.808 
0.808 
0.808 
0.931 
0.931 
0.931 
0.931 
0.931 
0.781 
0.866 
0.538 

0.131 0.147 0.324 

a Structures may be found in Refs. 25 and 26. * Key: E = estrogen, P = progestogen, A = androgen, C = corticosteroid, and H = cardiac steroid. 

structure, and a value of the descriptor index was assigned to each of the 
10 positions on the molecule. 

The selected descriptor was first-order molecular connectivity ( ' x u ) .  
which was calculated as the sum of the first-order terms for each bond 
joining the position of interest (20). This descriptor was selected because 
this index, when compared to molar refraction and a number of other 
fragment molecular connectivity indexes, showed lower rates of mis- 
classification when used in linear and quadratic discriminant analyses 
(1). Using the molecules in the learning set, each position variable was 
standardized to zero mean and unit variance prior to use. An observation 
to variable ratio of about 10 was sought. Accordingly, variable selection 
was performed using both the Fisher and variance weighting methods 
(18). 

The top five variables from a variance-weighted standpoint were, in 
order of importance, positions j ,  a, i, c ,  and b. These variables were the 
same as those selected in the stepwise discriminant analysis of the data. 
Using Fisher weighting, the same variable subset was selected, except 
that position f replaced b, which assumed sixth place in significance. Since 
position f had a constant value for three of the groups in the analysis 
(estrogens, progestogens, and cardiac steroids), the five-variable subset 

selected by variance weighting was adopted as a basis for performing the 
pattern recognition analyses. 

RESULTS AND DISCUSSION 

Andrews Functions-Andrews (21) introduced a trigonometric series 
expansion with orthonormal coefficients, which is useful for representing 
multivariate data in two dimensions. This function takes the form: 

F ( x )  = X I  0.707 + x2 sin t + x g  cos t 
+ xq sin 2t + x.5 cos 2t +. . . (Eq. 1) 

where the x values are the values of the respective variables for a given 
observation. For each observation, a plot of this function over the interval 
1 = [-.,TI radians gives a curve that is unique to the ohservation hut 
similar in shape and amplitude to the curves of observations having 
similar x values (i.e.,  observations close to each other in multidimensional 
space). The order of the x variables in Eq. 1 usually is determined based 
on the contribution of the variable to the between-group differences, with 
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Table 11-Classification by Andrews Function a 

Predicted Group Percent 
TrueGroup ESTR PROG ANDR CORT CARD Correctb 

ESTR 10 0 0 0 0 100.0 
PROG 0 7 3 0 0 66.7 
ANDR 0 2 5 0 2 55.6 
CORT 0 4 0 6 0 60.0 
CARD 0 0 1 0 6 85.7 
Mean ofgroup -3.65 0.30 1.22 -0.07 3.33 
SD 0.98 0.67 1.29 0.24 0.90 
~~ ~~~~ ~~ 

a For t = 0.28 rad, F ( x )  = 0.707 a + 0.267 j + 0.964 c + 0.514 i + 0.858 6. Variables 
are ordered according to their contribution to the between-group variation. 

Learning set results showed 74.5% correct. Compounds misclassified (predicted 
group) were: 11-13 (ANDR), 21 (PROG), 23 (CARD), 26 (CARD), 27 (PROG), 31 
(PROG), 34 (PROG), 37 (PROG), 39 (PROG), and 45 (ANDR). Test set results 
showed 77.8%) correct. Compounds misclassified (predicted group) were I1 (PROG) 
and 111 (ESTR). 

the most significant variable being assigned to x1 and the least significant 
variable assigned to the last term in the series. 

Andrews function plots of prototypes of each therapeutic class are 
shown in Fig. 1. For this purpose, the group centroids (mean values) of 
each class were considered to he representative of the class. Other 
possibilities would he to use median or mode values of the variables for 
a given group. Each curve in Fig. 1 represents a typical member of its class. 
There are points along the t axis where between-group separations are 
large. 

Figure 2 shows a plot of the total squared separation, summed over all 
possible pairs of groups (10 terms). The maximum in overall between- 
group separation occurs a t  0.28 radian. By fixing t at this value, the An- 
drews function becomes a form of the discriminant function. A histogram 
of the values of this function for all of the observations is seen in Fig. 
3. 

Table I1 shows detailed classification results for the compounds. The 
results were obtained by determining the distance, in standard deviation 
units, of the Andrews function value for each observation from the mean 
value of each group. The observation then was classified into the group 
for which the absolute value of this distance was the smallest. 

A comparison of the results in Table I1 with the corresponding results 
of a linear discriminant analysis (Table 111) shows that the single Andrews 
discriminant. function performed slightly worse in classifying the learning 
set (74% correct) compared to a discriminant analysis in which three 
canonical discriminant functions were used (83% correct). However, for 
the test set, the Andrews method correctly classified seven out of nine 
cases while the discriminant analysis was correct in only six cases. 

Better classification results might be obtained from the Andrews 
function by selecting more than one value o f t  and generating several 
discriminant functions. Other values of t for which the between-group 
separation is large are indicated in Fig. 2. As an alternative, a separate 
value of t  and its corresponding function could be selected for each pair 
of groups, and an observation could be classified based on the number 
of' pairwise comparisons. Neither approach was tried during the present 
work. 
K Nearest  Neighbor Analysis-This classification method con- 

ceptually is one of the simplest in the pattern recognition literature (22, 

4.1 I 

-4.5 I 
Figure 1-Andrcus function plots of the group centroids of each 
thrrapeutic category. The  mean values of the position variables a, j, c, 
i ,  and b u'ere used as cocfficients in the Andrews function in the order 
RI  i'en. 

Table 111-Discriminant Analysis Results for  Compounds in the 
Learning Set * 

Discriminant Score Coefficients 
Variable ESTR PROG ANDR CORT CARD 

a -9.36 2.08 -0.36 -3.36 15.67 
b -1.02 -0.73 1.16 -0.38 1.56 
C -7.09 1.06 2.87 -0.99 6.35 
i -4.24 1.19 2.29 0.50 0.71 
i -1.14 -0.14 -3.16 2.10 2.89 
Constant -13.76 -2.08 -5.60 -3.50 -21.97 

Linear classification results were obtained using BMDP7M (27); average results 
were 82.6% correct. Quadratic classification results were calculated using the Uni- 
versity of Wisconsin MULTDIS program (28); average results were 89.l%correct. 
Test set classification results (both linear and quadratic classification) were 66.7% 
correct. 

23). It differs from most minimum-distance classifiers in that the group 
centroid is not selected as the prototype of a given class. Instead, an ob- 
servation is classified into the group to which a majority of its K nearest 
neighbors in multidimensional space belong. Values of K usually range 
from one to 10, but classification results suffer whenever the value of K 
approaches the average class size. In ties, the group showing the smallest 
aggregate distance is selected. 

Table IV shows the results of K nearest neighbor analyses for the 
learning and test sets of compounds. For the learning set, the results a t  
all levels of K were comparable to the best results obtained bydiscrimi- 
nant analysis. For the test set, four compounds were misclassified for all 
values of K except the first value. This total is one misclassification more 
than was found with the linear and quadratic discriminant analysis 
methods. 

Multicategory Linear Learning Machine Analysis-In a manner 
similar to linear discriminant analysis, a linear learning machine seeks 
to define a function or boundary that will maximally separate a given 
group of Observations from all other observations (13). However, instead 
of relying on a fixed statistical criterion (such as maximizing the ratio of 
between-group variation to within-group variation), a learning machine 
generates the classification function by iteration and feedback (24). A 
vector of weighting coefficients is derived for each group. Then, for each 
observation, a discriminant score is calculated for each group, and the 
observation is classified into the group for which the discriminant score 
is highest. 

Table V summarizes the results of a multicategory linear learning 
machine analysis of the steroid data. A total of 201 iterations was per- 
formed, although the classification results ceased to improve after 186 
cycles through the data. Thirty-nine of the learning set (84.8%) and six 
of the test set (66.7%) compounds were classified correctly by this method. 
In each case, the misclassified compounds and the groups into which they 
were placed were identical to those misclassified in a linear discriminant 
analysis of the data. This result occurred in spite of the fact that some 
notable differences existed both in the relative magnitude and in the sign 
between the weighting vectors derived by the learning machine (Table 
V) and those calculated in the discriminant analysis (Table 111). 

All of the misclassified compounds were placed by the learning machine 

I4'*O5 0.28 radian I f \  

- I 
-3.14 3.14 

Figure 2-Plot of  the total sum of  squares of differences between each 
possible pair of curves s h o w  in Fig. 1.  Values in parentheses are values 
o f t  (radians) for which local maxima exist; these calues o f t  could br 
used to  generate additional discriminant functions. 
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Table IV-Results of K Nearest  Neighbor Analysis 
~~ ~~~ 

K 
Percent Correct 

Learning Set Test Set* 

87.0 
89.1 
89.1 
89.1 
87.OC 

66.7 
55.6 
55.6 
55.6 
55.6d 

Table V-Multicategory Linear Learning Machine Results: 
Final Weighting Vectors 

Group 
Variable ESTR PROG ANDR CORT C ARD 

a 0.357 0.646 0.469 -0.442 1.522 
b -1.250 0.747 1.392 -0.992 0.219 

-0.828 0.373 0.719 -0.498 0.191 
-0.643 0.194 0.113 0.010 0.209 

0.527 0.283 -0.10:! 0.610 0.781 
Constant 0.147 0.643 0.601 0.150 0.194 

; 
i 

Table VI-Principal Component Models f rom a SIMCA Study 

Percent 
Correct 

Compo- Variable in 
Group nenta a b C 1 i Groupb 

ESTR 

PROG 

1 -0.099 -0.150 -0.228 -0.189 -0.110 100.0 
2 -0.091 -0.967 0.052 -0.231 -0.004 
1 0.023 -0.018 0.025 0.004 -0.006 100.0 
2 0.208 0.177 -0.526 0.112 -0.797 

ANDR i -0.039 0.092 0.080 0.174 -0.139 55.6 
2 0.220 -0.235 -0.307 -0.895 0.035 

CORT 1 -0.097 -0.054 0.060 0.026 0.125 80.0 
CARD 1 0.299 0.199 0.101 -0.052 0.167 85.7 

2 0.550 0.770 -0.271 -0.027 0.176 
3 0.429 -0.032 0.841 -0.327 0.045 

a Cross-validation was performed to select the optimum number of components 
for each group, based on a partial F test that measures the significance of an added 
component, given the components already present. b Average learning set results 
were 84.8% correct. Compounds misclassified (predicted group) were 21 (PROG), 
24 (PROG), 25 (PROG). 27 (PROG), 30 (PROG), 39 (PROG), and 45 (PROG). 
Average test set results were 66.7% correct. Compounds misclassified (predicted 
group) were IV (PROG), VI (CORT), and VII (PROG). 

into the progestogen category. Examination of two- and three-dimen- 
sional scatter plots and Andrews curves of the progestogens revealed that 
this class of compounds showed wide within-group variation with respect 
to the position variables selected. T o  be classified successfully by a linear 
learning machine, the compounds must be linearly separable in the space 
of the descriptor variables, which perhaps is not the case here. 

Statistical Isolinear Multicomponent Analysis-A more sophis- 
ticated method of pattern recognition than those mentioned previously 
was developed by Wold (14). The SIMCA method involves generating 
a separate principal components model for each class of observations. 
Components are generated iteratively, and the number of components 
retained for each class may vary. For each group, the model so obtained 
is solved by least-squares techniques to determine the relationships be- 
tween the original variables and the derived principal components. 

An observation can be classified, and goodness of fit can be determined, 
by calculating the principal component scores of the observation for each 
group and then determining the theoretical x values the observation 
should have if i t  Were a member of the given group. The sum of squares 
of the differences between the calculated x values and the observed ones 
(ix., the residuals from the regression models) is a measure of how well 

A 

L 
C 
C A  8 
L 
C 
C A  
C C P  H 0 @ c  C P  H 
C C P  

@ c  C P  
E E P C A P H  H 
E @ EB P C A P A m  A H H  

0 
8 H 

H 

E E E  E E  A P C P P P A A A H H  

E 
Figure 3-Histogram of Andrews function values for the compounds 
in this study. Groups are estrogens ( E ) ,  progestogens (P), androgens 
(A ) ,  corticosteroids (C), and cardiac steroids ( H ) .  Circled entries are 
test set compounds. Group means ( f S D )  are shown below the axis. 

the observation fits the model for a particular group. An observation can 
be placed into the group for which this deviation is smallest or, depending 
on some preset criteria, it may be placed into a new class instead of into 
any existing group. 

Table VI summarizes the results of a SIMCA study of the data. The 
number of compounds misclassified by the SIMCA method for both the 
learning and test sets was the same as for the multiclass separator and 
the discriminant analysis techniques. However, the identities of the 
compounds misclassified were different. Those misclassified by the 
SIMCA method had more in common with the compounds misclassified 
by the K nearest neighbor analysis. This result may reflect a fundamental 
difference between the multiclass separator and discriminant analysis 
on the one hand and SIMCA and K nearest neighbor analysis on the 
other. The SIMCA and K nearest neighbor methods rely more on local 
properties of the data set (i.e., the distribution of compounds in the im- 
mediate neighborhood of the compound being classified). By contrast, 
the discriminant function methods rely on a more global view of the data 
set, considering all groups a t  once or, in the case of the multiclass sepa- 
rator, comparing a given group with all other groups combined. 

CONCLUSIONS 

First-order molecular connectivity values contain information that 
can be used, with varying degrees of success, in the classification of mo- 
lecular structures into their correct therapeutic categories using pattern 
recognition techniques. This has been demonstrated using a template- 
based method of variable assignment. Of course, any method of assigning 
position variables may be criticized on the basis of its subjectivity. An 
alternative method, involving whole-molecule molecular connectivity 
terms, is being studied, and encouraging results have been obtained“. 

For the compounds in this study, pattern recognition methods did not 
give better classification results than those obtained with the traditional 
discriminant analysis techniques. The latter methods, due to their sta- 
tistical nature, have the advantage that stepwise procedures may be 
employed for variable selection. Such stepwise techniques are not used 
as commonly in most pattern recognition research. 

The classification of observations per se is not usually considered a 
sufficient goal for research of the type reported here. The use of model- 
building methods of analysis, such as SIMCA, provides a basis for ex- 
tending such investigations to include both qualitative and quantitative 
predictions (9). However, i t  is important that  a variety of descriptor 
variables be studied to determine which variables are most suitable for 
particular purposes. Molecular connectivity indexes, because of their close 
relationship to molecular structure, have unique potential for classifi- 
cation problems. 
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Abstract  The molecular connectivity 4xpc index was examined for 
its ability to describe uniquely molecules containing substituted benzene 
rings. The subgraphs comprising this index were shown to encode in- 
formation about the number, placement, and type of ring substituents. 
Several examples illustrate the ability of the index to describe struc- 
ture-influencing properties. 

Keyphrases Molecular connectivity-description of molecules con- 
taining substituted benzene rings by 4xpc index Structure-activity 
relationships--molecules containing substituted benzene rings, inter- 
pretation of structure-activity relationship from molecular connectivity 
4 x p ~  index 

Since the development of a new method of molecular 
structure quantitation called molecular connectivity, it has 
been utilized in numerous structure-activity relationship 
studies (1-7). The numerical indexes computed for each 
molecule are rich in information content; hence, constel- 
lations of indexes are of considerable value in describing 
structural features contributing to the numerical value of 
a physical property or biological activity. This study ex- 
plored the information content of one important index, 
4xpc, and revealed how it plays a prominent role in several 
structure-activity relationship analyses. 

THEORY 

The molecular connectivity description of molecular structure gives 
rise to several numerical indexes of the general form ’”xt, where m is the 
order of the molecular fragment and t is the type. Indexes may be of the 
simple connectivity (unweighted adjacency) or valence level. The indexes 
are weighted counts of fragments within a molecule, conveying infor- 
mation about topological features such as molecular size, branching, 
cyclization, unsaturation, and heteroatom location and type. 

One distinct advantage of a molecular connectivity analysis of structure 
in a structure-activity relationship study is that  the indexes correlating 
with activity in a regression analysis can be interpreted directly in terms 
of structural fragments meaningful to the medicinal chemist (8-10). 
Depending on the study, various indexes will emerge from searches with 
one or more variables, each conveying various amounts of structural in- 
formation. 

It has become apparent in the studies conducted in these laboratories 
that  certain patterns of index appearance are found in analyses of mo- 
lecular structure using molecular connectivity. One noteworthy ap- 
pearance is the 4xpc (or the 4 x $ ~ )  index in studies on the structures of 
molecules containing substituted benzene rings. This index frequently 
is important as a second or third variable in regression analyses on mol- 
ecules in which the benzene rings possess different numbers, positions, 
and types of substituents. 

This recurrence led to the belief that  the 4xpc index carries a high 
degree of information content in these structural classes that is common 
to many drug molecules. The purpose of this report is to analyze and 
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